

Markscheme

May 2018

Chemistry

Standard level

Paper 3

This markscheme is the property of the International Baccalaureate and must **not** be reproduced or distributed to any other person without the authorization of the IB Global Centre, Cardiff.

Section A

C	Question		Answers	Notes	Total
1.	а	i	consists of single/one sheet/layer «of carbon atoms» ✓	Do not accept "sp²" alone without reference to single/one sheet/layer.	
			graphene has no density measurement OR graphene has no distance between layers data OR graphene has large specific surface area «compared to graphite» ✓	Accept "thickness of one atom" OR "consists of a plane" for M1.	2
1.	а	ii	Any one of these alternatives: ALTERNATIVE 1 $ \frac{1.3 \times 10^{11}}{76 \times 10^{6}} $ $ 1.7 \times 10^{3}/1711 \checkmark $ ALTERNATIVE 2 $ 1600 \times 76 \times 10^{6} = 1.2 \times 10^{11} \text{ (is less than tensile strength of graphene)} \checkmark $	Accept any value in the range 1700–27 083. Answer may be expressed in scientific notation or otherwise. Accept any value calculated which is	1
			ALTERNATIVE 3 $\frac{1.3 \times 10^{11}}{1600} = 8.1 \times 10^{7} \text{ (is greater than upper end of tensile strength for graphite)} \checkmark$	less than the graphene tensile strength based on a value chosen from within the 4.8–76 × 10 ⁶ range.	

(Question 1a continued)

C	uesti	on	Answers	Notes	Total
1.	a	iii	«graphene has a high electron mobility of» 15 000–200 000 «cm² V⁻¹ s⁻¹» ✓ smaller/zero ✓	A specific value or range of values must be given. Accept any value in the 15 000–200 000 «cm² V-1 s-1» range.	1
			no delocalized electrons/electrons are bound/electrons not free to move/electrons not free to roam OR localized electrons «in sigma bonds» OR large band gap ✓	Accept "diamond is a dielectric" OR "diamond does not conduct electricity" for M2. Award [1 max] for just "immobile/less mobile". Award [2] for "electrons immobile «in diamond» due to the large band gap" OR "electrons «in diamond» immobile since electrons are localized «in the sigma bonds»".	2

-4-

C	uestion	Answers	Notes	Total
1.	С	shorter bonds in graphene		
		OR		
		bonds in graphene intermediate between single and double		
		OR		
		bond order in graphene is 1.33		
		OR		
		delocalization creates stronger bonds		2
		OR		_
		shorter bonds are stronger ✓		
		stronger/shorter bonds require higher temperature/faster thermal motion to be altered		
		OR		
		stronger/shorter bonds require greater energy to be broken ✓		

Question		Answers	Notes	Total
2.	а	Any two of: Ethene: «carbon–carbon» double bond AND Ethane: «carbon–carbon» single bond ✓	Do not accept "different number of atoms/hydrogens/bonds" etc.	
		ethene has a shorter carbon–carbon bond «than ethane» ✓	Accept "Ethene: unsaturated AND Ethane: saturated" OR "Ethene: has a double bond AND Ethane: does not" OR "Ethene: two flexible bonds between	
		Ethene: planar/two-dimensional/2-D AND Ethane: tetrahedral «carbons»/ three-dimensional/3-D	carbon atoms AND Ethane: one". Accept any reasonable physical	
		OR	description of the two different molecular models based on a variety of	
		Ethene: each carbon surrounded by three electron domains AND Ethane: each carbon surrounded by four electron domains	kits for M1.	
		OR		
		different molecular geometries/shapes ✓		2 max
		rotation about carbon–carbon inhibited/blocked in ethene <i>AND</i> not in ethane ✓		
		«H–C–C/H–C–H» bond angles different	For ethene, accept any bond angle in the range 117–122°.	
		OR	Award [2] if any two of the concepts	
		Ethene: «bond angles approximately» 120° AND Ethane: 109.5/109° ✓	listed are shown in a correctly labelled or annotated diagram.	
			Award [1 max] for two correct statements for either molecule but with no comparison given to the other.	
			Award [1 max] for suitable unlabeled diagrams of both compounds.	

C	Question		Answers	Notes	Total
2.	b	i	Answers 6 carbon atoms labelled in correct positions ✓ both nitrogen atoms labelled in correct positions ✓ bromine AND chlorine atoms labelled in correct positions ✓	Notes	Total
			N Br		

(Question 2b continued)

Question	Answers	Notes	Total
Question 2. b ii	accurate bond angles/lengths can be measured OR «using mathematical functions» can calculate expected shapes based on energy minimizations OR better visualization of possible bond rotations/conformation/modes of vibration	Notes Accept "precise" for "accurate". Accept "computer generated structural representation is normally what is expected in order to be published «in a	Total
	Can visualize macromolecules/proteins/DNA OR hydrogen bonding «networks» can be generated/allows intermolecular forces «of attraction» to be simulated OR more variety of visualization representations/can observe space filling OR can produce an electron density map/electrostatic potential map OR once model is generated file can be saved for future use/computer models can be shared globally by scientists OR helps design molecules of biological significance/assists in drug design «using libraries» OR can predict molecular interactions with solvents/can predict physical properties/can predict spectral data/can examine crystal structures OR «often» easier to construct/modify «model» ✓	Accept "easier to see different sizes of atoms/atomic radii".	1

(Question 2b continued)

Q	Question		Answers	Notes	Total
2.	b	iii	bonds within ring have resonance OR	There must be reference to a ring or cyclic structure.	
			contains delocalized «conjugated pi» electrons in ring ✓	Accept "alternating single and double bonds in a ring".	
				Accept "ring which shows resonance/delocalization".	1
				Accept "follows Hückel/4n +2 rule".	
				Do not accept "contains one or more benzene rings".	

Section B

Option A — Materials

	Question	Answers	Notes	Total
3.	а	Alloy: mixture of metal with other metals/non-metals OR mixture of elements that retains the properties of a metal ✓ Composite: reinforcing phase embedded in matrix phase ✓	Award [1 max] for implying "composites only have heterogeneous/nonhomogeneous compositions".	2
3.	b	effective for yttrium «but less/not for nickel» ✓	Accept "ICP-OES is more accurate for lower yttrium concentrations than higher concentrations" for M1.	
		points on nickel graph do not lie on $\mathbf{w}y = x\mathbf{w}$ line \mathbf{OR} cannot be used for low concentrations of nickel \mathbf{OR}	Accept [Ni] and [Y] for concentrations of nickel and yttrium. Accept "detection limit for yttrium is lower than for nickel" for M2.	2
		concentration of nickel is lower than recorded value ✓	Award [1 max] for "more accurate for yttrium at lower concentrations AND nickel at higher concentrations".	

(Question		Answers	Notes	Total
3.	С	i	Graph 1: determines wavelength of maximum absorption/maximum intensity «for vanadium» ✓	Do not accept just "determines maximum wavelength/ λ_{max} " for M1.	
			Graph 2: determines absorption of known concentrations «at that wavelength» OR estimates [V]/concentration in a sample using «the signal» intensity ✓	Do not accept "calibration curve" for M2.	2
3.	С	ii	«14 950 = 392.19 x + 147.62» x = 37.74 «µg kg ⁻¹ » ✓	Answer must be given to four significant figures. Do not accept values obtained directly from the graph.	1
3.	С	iii	vanadium reduced in first reaction <i>AND</i> oxidized in second reaction <i>OR</i>	Do not accept "reactants adsorb onto surface AND products desorb".	
			V_2O_5 oxidizes SO_2 in first reaction AND VO_2 reduces O_2 in second reaction		
			OR		2
			vanadium returns to original oxidation state «after reaction» ✓	Accept "oxidation number" for "oxidation state".	2
			provides an alternative reaction pathway/mechanism «with a lower activation energy» ✓		

(Question		Answers	Notes	Total
4.	a		Atactic CH ₃ CH ₃ CH ₃ -CH ₂ -CH-CH ₂ -CH-CH ₂ -CH-CH ₂ -CH- CH ₃ CH ₃ CH ₃ CH ₃ CH ₃ CH ₃ CH ₃ CH ₃ CH ₃ CH ₃ CH ₃ CH ₂ CH-CH ₂ -CH-CH ₂ -CH	Do not accept syndiotactic (alternating orientation of the CH ₃ groups), eg, CH ₃ -CH ₂ -CH-CH ₂ -CH-CH ₂ -CH-CH ₂ -CH- CH ₃ for M1 or M2. Accept any correct atactic ordering of CH ₃ groups. Penalize missing hydrogens or incorrect bond connectivities once only. Accept skeletal structures. Ignore continuation bonds, brackets and "n" indices in structures.	2
4.	b	i	strong covalent bonds ✓	Accept "moisture cannot get inside the plastic matrix, and bacteria cannot live without moisture, so they cannot attack the polymer chains". Accept "bacteria lack the enzymes required to break down the hydrocarbon chains".	1

– 12 –

(Question 4b continued)

C	Question		Answers	Notes	Total
4.	b	ii	Any two of: Recycling: shredded/melted/reformed AND Reuse: used in its current form ✓ recycling is more energy intensive «than reusing» ✓ recycling degrades the quality of plastic but reusing «typically» does not ✓ recycling breaks down original product to form a new product whereas reuse extends product life ✓		2
4.	С	i	more pliable/flexible materials OR more durable/non-corrosive/longer-lasting materials OR greater variety of materials OR lower density OR can be clear/translucent ✓	Accept "more adaptable". Do not accept just "more useful".	1

– 13 –

	Question	Answers	Notes	Total
5.	а	Arc discharge: graphite electrode OR hydrocarbon solvent ✓	Accept "carbon electrode". Accept specific examples of suitable hydrocarbon solvents (eg, methyl benzene/toluene OR cyclohexane).	2
		CVD: gaseous hydrocarbons ✓	Accept specific examples of suitable gaseous hydrocarbons (eg, methane, ethane, ethyne/acetylene) OR carbon monoxide OR carbon dioxide.	
5.	b	Any three from: chemically stable AND does not «chemically» degrade over time ✓ stable over range of temperatures AND to avoid «voltage/random shift» fluctuations ✓ polar AND influenced by an electric field ✓ strong intermolecular forces AND allow molecule to align in specific orientations ✓ rapid switching speed/low viscosity AND change orientation «quickly» when electric field is applied/reversed ✓	Award [1 max] for identifying three correct properties without any discussion or incorrect interpretation of suitability. Accept "voltage" for "electric field".	3 max

Option B — Biochemistry

	Question	Answers	Notes	Total
6.	a	Type of reaction: condensation OR esterification/triesterification OR nucleophilic substitution/nucleophilic displacement/S _N 2 ✓ By-product: water/H ₂ O ✓	Do not accept just "substitution/displacement".	2
6.	b	ALTERNATIVE 1 $ \frac{334}{253.8} = 1.32 \text{ AND } \ll \frac{100}{304.5} = 0.328 \checkmark $ $ \frac{1.32}{0.328} \approx 4 \checkmark $ ALTERNATIVE 2 $ \frac{304.5}{100} \approx 1017 \checkmark $ $ \frac{1017}{253.8} \approx 4 \checkmark $	Award [2] for correct final answer.	2

– 15 –

-16-

– 17 –

C	Question	Answers	Notes	Total
6.	f	ratio of oxygen to carbon in lipids lower OR lipids less oxidized	Accept "«average» oxidation number of carbon in linoleic acid is lower" for M1.	
		OR lipids more reduced ✓		2
		more energy per mass/g released when lipids are oxidized ✓		

– 18 –

Question	Answers	Notes	Total
8.	Any two of:	Accept formulas for names.	
	replaces plastics with biodegradable/starch/cellulose based plastics ✓	Award mark for any other reasonable specific green chemistry example that	
	use enzymes instead of polluting detergents/phosphates	prevents the release of pollutants/toxic chemicals into the environment by	
	OR use of enzymes means lower temperatures can be used	changing the method or the materials used.	
	OR	Do not award mark for methods that	
	use enzymes instead of emulsifiers to treat oil spills	involve clean-up of pollutants from the environment such as host-guest	
	OR	chemistry or alternative energy sources.	
	use enzymes to produce esters at lower temperatures/without sulfuric acid ✓		2
	replace organic/toxic solvents with carbon dioxide ✓		
	replace polymers from fossil fuel with bamboo/renewable resources ✓		
	develop paint resins reducing production of volatile compounds «when paint is applied» ✓		
	industrial synthesis of ethanoic/acetic acid from methanol and carbon monoxide has 100% atom economy ✓		
	energy recovery ✓		

Question	Answers	Notes	Total
9.	Vitamin A: fat soluble/soluble in non-polar solvents AND non-polar/long hydrocarbon backbone/chain ✓	Accept "Vitamin A: fat soluble/soluble in non-polar solvents as it contains only one hydroxyl group whose H-bonds with water are not strong enough to overcome London/dispersion/vdW forces between Vitamin A molecules".	
	Vitamin C: water soluble AND contains 4 hydroxyl groups/contains many hydroxyl groups/forms «many» H-bonds with water ✓	Accept "lipid" for "fats". Accept "alcohol" OR "hydroxy" OR "OH groups" for "hydroxyl" but not "hydroxide".	2
		Award [1 max] for "Vitamin A: fat soluble AND Vitamin C: water soluble" with no or incomplete explanation.	

Option C — Energy

Question	Answers	Notes	Total
Question 10. a	Any two of: high energy content/high energy density/high specific energy OR high enthalpy of combustion/very exothermic enthalpy of combustion ✓ shortage of alternatives OR alternatives are expensive OR oil is relatively cheap OR oil is «still» abundant/common ✓ well-established technology OR easy for consumers to obtain OR commonly used ✓ easy to store OR easy to transport OR	Accept "high potential energy" for M1.	Total
	easy to extract ✓ produces energy at a reasonable rate ✓		

– 21 –

C	uesti	ion	Answers	Notes	Total
10.	b	i	$C_{16}H_{34}(g) \rightarrow C_{8}H_{16}(g) + C_{8}H_{18}(g)$ <i>OR</i> $C_{16}H_{34}(g) + H_{2}(g) \rightarrow 2 C_{8}H_{18}(g)$		1
10.	b	ii	C ₈ H ₁₈ AND is an alkane OR C ₈ H ₁₈ AND petrol does not contain alkenes ✓		1
10.	С	i	fuels can be compressed more without undergoing «unwanted» auto-ignition ✓	Accept "burns smoother without undergoing «unwanted» auto-ignition" OR "fuel does not auto-ignite".	1
10.	С	ii	produces more branched chain hydrocarbons «with higher octane rating» OR produces aromatics «which have higher octane rating» OR produces cyclohexanes «which have higher octane rating» ✓	Accept "increase branches". Do not accept "produces benzene". Do not penalize for "benzene" if penalty applied in 2.b.iii. Accept "produces cyclic structures".	1

- 22 -

C	uestio	Answers	Notes	Total
11.		Any three of: IR/long wavelength/low frequency radiation radiated/emitted by the Earth's «surface absorbed in the bonds» ✓ bond length/C=O changes OR «asymmetric» stretching of bonds OR bond angle/OCO changes ✓ polarity/dipole «moment» changes OR dipole «moment» created «when molecule absorbs IR» ✓	Notes Do not accept terms such as "reflect" OR "bounced" OR "trapped".	Total
		«some of» energy is then re-radiated towards «the surface of the» Earth ✓		

C	uestio	Answers	Notes	Total
11.	b	Any two of:	Accept names or formulas.	
		H ₂ O AND «relatively» greater abundance/stable concentration/less effective at absorbing radiation/lower GWP so not much overall effect on global warming/climate change ✓	Accept two different gases with the same effect for [2].	
		CH ₄ /N ₂ O/CFCs/SF ₆ /O ₃ /HCFCs AND more effective «than CO ₂ » at absorbing radiation/higher GWP so could contribute to global warming/climate change ✓	Award [1 max] for identifying the names/formulas of two greenhouse gases.	2
		PFCs/SF ₆ /NF ₃ /Some CFCs AND have very long life in atmosphere so could	Accept "greenhouse factor" for "GWP" but not just "greenhouse effect".	
		contribute «in the future» to global warming/climate change ✓	For M3, do not allow "CFC" alone as only some have long lifetimes (eg, CFC-115, CFC-113).	

- 24 -

12.	а	$ \frac{813K - 296K}{813K} \times 100 = 64 $		1
12.	b	35 % of <u>chemical/potential</u> energy available in coal is transformed to electricity/electrical energy ✓		
		not all <u>chemical</u> energy from burning fuel transferred into heating water OR	Accept "stored energy" for "potential energy".	2
		energy dispersed elsewhere/energy lost due to friction of moving parts		
		OR		
		heat loss to the surroundings 🗸		

C	Question	Answers	Notes	Total
13.	а	Award [1] for one similarity: both increase binding energy/energy yield «per nucleon» OR mass loss/defect in both «nuclear» reactions/mass converted to energy «from E = mc²» OR both produce ionizing radiation ✓ Award [2 max] for any two differences: in fusion, light nuclei combine to form heavier ones AND in fission, heavier nuclei split into lighter ones ✓ fission produces radioactive/nuclear waste AND fusion does not ✓ fission is caused by bombarding with a neutron «or by spontaneous fission» AND fusion does not OR fission can initiate a chain reaction AND fusion does not ✓	Accept "small nuclei" OR "smaller atomic masses of nuclei" for "light nuclei" AND "large nuclei" OR "greater atomic masses of nuclei" for "heavier nuclei". Do not accept "no/less waste produced for fusion".	3
		fusion releases more energy <u>per unit mass</u> of fuel than fission \checkmark fuel is easier to obtain/cheaper for fusion reactions \checkmark fission reactions can be controlled in a power plant <i>AND</i> fusion cannot «yet» \checkmark fusion reactor less likely to cause a large-scale technological disaster compared to fission \checkmark fusion less dangerous than fission as radioactive isotopes produced have short half-lives so only cause a threat for a relatively short period of time \checkmark fusion is in experimental development <i>AND</i> fission used commercially \checkmark	Accept "higher specific energy for fusion".	

Question		on	Answers	Notes	Total
13.	b		$\frac{1}{64}/\frac{1}{2^6}/0.016$ \checkmark	Accept "1.6 %".	1

- 26 -

14.	а	$C_7H_{15}COOC_5H_{11} (I) + CH_3OH (I) \rightarrow C_7H_{15}COOCH_3 (I) + C_5H_{11}OH (I)$ \textit{OR} $C_{13}H_{26}O_2 (I) + CH_4O (I) \rightarrow C_9H_{18}O_2 (I) + C_5H_{12}O (I)$ \textit{OR}	Accept correct equation in any format eg, skeletal, condensed structural formula, etc.	
		$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Accept equations with equilibrium arrow.	1
		$H_{3}C$ CH_{3} $H_{3}C$ CH_{3} $H_{2}C$ $CH_{2}C$ $H_{2}C$ $H_{$		
14.	b	less viscous «and so does not need to be heated to flow» OR less likely to undergo incomplete combustion	Ignore equation and products in 14a.	
		ORfewer intermolecular/London/dispersion forcesOR	Accept "van der Waals'/vdW" for "London".	1
		vaporizes easier ✓		

Option D — Medicinal chemistry

Question		Answers	Notes	Total
15.		LD ₅₀ : amount/dose that kills 50% of the population ✓ TD ₅₀ : amount/dose that negatively affects/produces toxic effects in 50% of the population ✓	Award [1 max] for "LD ₅₀ used in animal trials AND TD ₅₀ used in human studies".	2

– 27 –

16.	а	i	«irreversibly» binds/bonds to enzyme/transpeptidase	
			OR	
			inhibits enzyme/transpeptidase «in bacteria» that produces cell <u>walls</u>	
			OR	
			prevents cross-linking of bacterial cell <u>walls</u> ✓	2
			cells absorb water AND burst	
			OR	
			cells cannot reproduce ✓	
16.	а	ii	modify side chain ✓	1

C	uestion	Answers	Notes	Total
16.	b	condensation OR esterification OR nucleophilic substitution/nucleophilic displacement/S _N 2 ✓	Do not accept just "substitution/displacement".	1
16.	С	water causes hydrolysis OR aspirin reacts with water ✓ heat increases the rate of hydrolysis OR heat increases the rate of the reaction with water ✓	Accept "aspirin will convert into salicylic/ethanoic acid". Do not accept "aspirin dissolves in water" OR "aspirin absorbs water/is hygroscopic".	2

Q	uestion	Answers	Notes	Total
17.		morphine has hydroxyl/OH groups/is more polar <i>AND</i> diamorphine has ester/ethanoate/acetate groups/is less polar/is lipid soluble ✓ crossing blood brain barrier is easier for non-polar/less polar compounds/for lipid soluble compounds ✓	Accept "alcohol/hydroxy" for "hydroxyl" but not "hydroxide". Accept "fats" for "lipid".	2

- 29 -

18.	а	2HCl (aq) + CaCO ₃ (s) \rightarrow H ₂ O (l) + CO ₂ (g) + CaCl ₂ (aq) \checkmark	Accept ionic equation: $2H^+(aq) + CO_3^{2-}(aq) \rightarrow CO_2(g) + H_2O(l)$	1
18.	b	$ \frac{0.750 \times 2}{100.09} $ =» 0.0150 «mol HCl» ✓		1
18.	С	inhibits the secretion of stomach acid/H⁺ ✓	Do not accept "hydrogen/H/H₂" for "H+".	
		«active metabolites» bind «irreversibly» to «receptors of the» proton pump ✓	Accept "PPI/proton pump inhibitor" for M2.	2
			Accept "H+/K+ ATPase" for "proton pump".	

Q	uestion	Answers	Notes	Total
19.	а	Any two of: hydroxyl ✓	Accept "alcohol/hydroxy" for "hydroxyl", "carboxylic acid" for "carboxyl" and "amide/carboxamide" for "amido".	
		carboxyl/carbonyl ✓ ether ✓	Accept "amino/amine" OR "imine/imino" but these are not correct as they are part of the guanidino group.	0
		amido/carbonyl √	Accept "alkenyl/alkene/carbon to carbon double bond" but not "C=C" OR "carbon double bond".	2
			Accept "carbonyl" only once.	
			Accept "heterocyclic ring" for "ether".	
19.	b	Any two of: bacteria perform living functions «on their own» AND viruses do not «without host cell» ✓	Accept examples of living functions- excretion, reproduction etc for M1.	
		bacteria have cell walls <i>AND</i> viruses do not <i>OR</i> bacteria do not have a capsid <i>AND</i> viruses do√	Accept "bacteria have flagella/cytoplasm/ribosome AND virus can have head/protein tail/double stranded RNA/single stranded DNA".	
			Accept other specific structural differences for M2.	2
		bacteria larger than viruses ✓		
		bacteria reproduce by fission/budding AND viruses reproduce within a living host cell ✓	Accept "asexual reproduction for bacteria" for M4.	

Question	Answers	Notes	Total
20.	Hazardous solvent: Any one of:	Accept correct names (either IUPAC or generic) or formulas.	
	methanal/formaldehyde √	Do not accept inorganic acids such as HCI, H ₂ SO ₄ , etc.	
	methanol ✓		
	chlorinated solvent/carbon tetrachloride/methylene chloride/dichloromethane ✓	Accept any specific chlorinated solvent.	
	diethyl ether/ethoxyethane ✓		
	benzene	Accept other hazardous solvents.	
	OR		
	methyl benzene/toluene		
	OR		2
	«1,2/1,3/1,4» dimethylbenzene/«ortho/o-/meta/m-/para/p-» xylene ✓		
	Green solvent:	Do not accept any solvent given as both hazardous and green.	
	Any one of:		
	water ✓		
	«supercritical/liquid» carbon dioxide/supercritical fluids ✓	Award [2] for combination "Hazardous solvent: dimethylformamide/DMF/N,N-dimethylmethanamide" AND "Green solvent: methanol «only if replacing a hazardous solvent»".	
	ethanol «only if replacing a hazardous solvent» ✓		
	propan-2-ol/2-propanol/isopropanol «only if replacing a hazardous solvent» ✓		
	propanone/acetone «only if replacing a hazardous solvent» ✓		
	ethyl ethanoate/ethyl acetate «only if replacing a hazardous solvent» 🗸		
	organic carbonates/dimethyl carbonate/diethyl carbonate/ethylene carbonate/propylene carbonate ✓		
	ionic liquids ✓		
	fluorous solvents ✓	Accept other green solvents but not "solvents from biomass/food waste".	